Goethe Leibniz Terahertz Center

Opener Opener Opener Image 34462403 Opener Opener Opener Image 34462403 Opener

MIMIRAWE

Imaging and target tracking millimeter-wave radar for space applications

Landing and docking in space require imaging and target tracking sensors that can operate independently of the lighting situation and at the same time have good resolution and precise spatial localization with minimum data rates. Millimeter-wave radar sensors and real-time image processing can meet these requirements.

More information

TeraScreen

Multi-frequency multi-mode Terahertz screening for border checks

TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz (THz) detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point in Madrid-Barajas International Airport, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates.

More information

TWEETHER

TWEETHER

Internet use and technology has penetrated deeply and fast in society everyday life as no other technology before in the last decades and is expected to do in the future. The enormous flux of data transferred via wireless networks, increasing at exponential pace, makes today’s state of the art networks soon outdated. Large parts of the society are deprived of adequate access to Internet due to the high costs, long deployment time of optical fibres and inadequate performance of wireless networks. This inequality will most likely pertain in the next years.

Millimetre and Terahertz waves are the most promising solution to support the increasing data throughput and to be a credible fibre complement for the last miles. The TWEETHER aim is to realise the millimetre wave Point to multi Point segment to finally link fibre and distribution for a full three segment hybrid network, that is the most cost-effective architecture to reach mobile or fixed final individual client.

The TWEETHER project intends to foster smart wireless network architecture for high capacity everywhere outdoor data distribution, in gigabit class, that other technologies cannot support, at low operating cost. High spectrum and energy efficient W-band (92-95GHz) technology will be developed. A powerful and compact transmission hub based on a novel traveling wave tube power amplifier with performance precluded to any other technology and an advanced chipset in a compact terminal will be realised. The TWEETHER system will be tested in a real operating environment. Integrated smart networks of backhaul for 4G and 5G small cells and of access for residential houses are the targeted market that benefits from the actual light regulation of W-band. A big company Thales Electron Devices, four SMEs, Bluwan, OMMIC, HFSE, Fibernova, and three top Universities, Lancaster, Goethe Frankfurt, Politecnica de Valencia, join their expertise to successfully tackle the formidable challenges of the TWEETHER project.

The Goethe Leibniz Terahertz Center will perform travelling-wave tube and amplifier development, as well as testing. It will also test MMIC chipset for the terminal and base station of the TWEETHER system and will participate in the system design. This work is based on the expertise of the group on TWTA design from pervious projects, such as OPTHER (Link) and PhD thesis (Link)

CELTA

CELTA

Convergence of Electronics and Photonics Technologies for Enabling Terahertz Applications (CELTA)  

CELTA project aims to develop applications and complete systems for sensing, instrumentation, imaging, spectroscopy, and communications utilizing the terahertz technologies. Goethe Leibniz Terahertz Center focuses on two aspects. First one is the investigation and design of plasmonic detectors with integrated antenna structure and their further application for high resolution camera. Second one is the design and the integration of components for a millimeter-wave imaging radar front-end.  

More information http://www.celta-itn.eu/

Publications:

2018

Conferences:

Mbeutcha, G. Ulisse and V. Krozer, “Millimeter-wave imaging radar system design based on detailed system radar simulation tool,” 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 2018, pp. 517-520.

Mbeutcha, T. K. Johansen, Y. Dong, B. Cimoli and V. Krozer, “Replicability of a millimeter-wave microstrip bandpass filter using parallel coupled lines,” 2018 2nd IEEE MTT-S Latin America Microwave Conference (LAMC), Arequipa, Peru, 2018 [in press].

Kęstutis Ikamas, Justinas Zdanevičius, Lukas Dundulis, Sandra Pralgauskaitė and Alvydas Lisauskas, Dovilė Čibiraitė, Daniel Voß and Viktor Krozer, Hartmut G. Roskos „Quasi Optical THz Detectors in Si CMOS”, 22nd International Microwave and Radar Conference, no. 1570425647, 2018. https://ieeexplore.ieee.org/document/8405336

Dovilė Čibiraitė, Maris Bauer, Adam Rämer, Serguei Chevtchenko, Alvydas Lisauskas, Viktor Krozer, Wolfgang Heinrich, and Hartmut G. Roskos, „AlGaN/GaN HEMT-based THz Detectors for a High-Resolution THz Camera“, 62nd International Conference for Students of Physics and Natural Sciences, Vilnius, Lithuania, 2018. http://www.openreadings.eu/wp-content/uploads/2018/03/knyga-after.pdf

Zdanevičius, D. Čibiraitė, K. Ikamas, M. Bauer, J. Matukas, A. Lisauskas, H. Richter, V. Krozer, H.-W. Hübers, and H. G. Roskos, “Field-Effect Transistor Based Detector for Measuring Power Fluctuations of 4.75-THz Quantum-Cascade Laser-Generated Radiation”, 29th IEEE International Symposium on Space Terahertz Technology, Pasadena, California, USA, March 26-28, 2018. https://www.nrao.edu/meetings/isstt/papers/2018/2018132134.pdf

Kęstutis Ikamas, Dovilė Čibiraitė, Maris Bauer, Alvydas Lisauskas, Viktor Krozer, and Hartmut G. Roskos “Ultrabroadband Terahertz Detectors Based on CMOS Field-Effect Transistors with Integrated Antennas” in Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2017 42nd International Conference on, 2018, pp. 1- 2. doi: 10.1109/IRMMW-THz.2018.8510062 https://ieeexplore.ieee.org/document/8510062

Journals:

Alvydas Lisauskas, Kęstutis Ikamas, Sylvain Massabeau, Maris Bauer, Dovilė Čibiraitė, Jonas Matukas, Juliette Mangeney, Martin Mittendorff, Stephan Winnerl, Viktor Krozer, and Hartmut G. Roskos, “Field-effect transistors as electrically controllable nonlinear rectifiers for the characterization of terahertz pulses, in APL Photonics, vol.3, no. 5, 051705, 2018. doi: 10.1063/1.5011392, http://aip.scitation.org/doi/10.1063/1.5011392

Kęstutis Ikamas, Dovilė Čibiraitė, Alvydas Lisauskas, Maris Bauer, Viktor Krozer, and Hartmut G. Roskos, “Broadband Terahertz Power Detectors based on 90-nm Silicon CMOS Transistors with Flat Responsivity up to 2.2 THz”, IEEE Electron Device Letters, vol. 39, no. 9, p. 1413-1416, 2018. doi: 10.1109/LED.2018.2859300, https://ieeexplore.ieee.org/abstract/document/8418740/

Justinas Zdanevičius, Dovilė Čibiraitė, Kęstutis Ikamas, Maris Bauer, Jonas Matukas, Alvydas Lisauskas, Heiko Richter, Till Hagelschuer, Viktor Krozer, Heinz W. Hübers, and Hartmut G. Roskos „Field-effect transistor-based detectors for power monitoring of THz quantum cascade lasers”, Transactions on Terahertz Science and Technology, vol. 8, no. 6, 2018. https://ieeexplore.ieee.org/document/8536434

Ikamas, A. Lisauskas, S. Massabeau, M. Bauer, M. Burakevič, J. Vyšniauskas, D. Čibiraitė, V. Krozer, A. Rämer, S. Shevchenko, et al., „Sub-picosecond pulsed THz FET detector characterization in plasmonic detection regime based on autocorrelation technique“, Semiconductor Science and Technology, vol. 33, no. 12, 2018 Nov. http://iopscience.iop.org/article/10.1088/1361-6641/aae905

2017

Conferences:

Lisauskas, M. Bauer, K. Ikamas, J. Zdanevičius, D. Voß, D. Čibiraitė, V. Krozer, and H. G. Roskos, “High-performance THz detectors in 90 nm Si CMOS technology,” in 9th THz Days, 2017, pp. 1. Non peer-reviewed, Link: https://9th-thz-days.univ-littoral.fr/wp-content/uploads/2017/06/9THzDays_Final_Program2.pdf

Cibiraite; M. Bauer; A. Lisauskas; V. Krozer; H. G. Roskos; A. Rämer; V. Krozer; W. Heinrich; S. Pralgauskaite; J. Zdanevicius; J. Matukas; A. Lisauskas; M. Andersson; J. Stake, “Thermal noise-limited sensitivity of FET-based terahertz detectors,” in Noise and Fluctuations (ICNF), 2017 International Conference on, 2017, pp. 1–4. doi: 10.1109/ICNF.2017.7986008, http://ieeexplore.ieee.org/document/7986008/

Kęstutis Ikamas; Alvydas Lisauskas; Maris Bauer; Adam Rämer; Sylvain Massabeau; Dovilė Čibiraitė; Marek Burakevič; Serguei Chevtchenko; Juliette Mangeney; Wolfgang Heinrich; Viktor Krozer; Hartmut G. Roskos, ”Efficient detection of short-pulse THz radiation with field effect transistors” in Noise and Fluctuations (ICNF), 2017 International Conference on, 2017, pp. 1–4. doi: 10.1109/ICNF.2017.7985961, http://ieeexplore.ieee.org/document/7985961/

Čibiraitė, M. Bauer, A. Rämer, S. Chevtchenko, A. Lisauskas, J. Matukas , V. Krozer, W. Heinrich , H. G. Roskos, “Enhanced performance of AlGaN/GaN HEMT-Based THz detectors at room temperature and at low temperature,” in Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2017 42nd International Conference on, 2017, pp. 1- 2. doi: 10.1109/IRMMW-THz.2017.8067118, http://ieeexplore.ieee.org/document/8067118/

ULTRAWAVE

ULTRAWAVE

Ultra capacity wireless layer beyond 100 GHz based on millimetre wave traveling wave tubes

The ULTRAWAVE is a major new international research programme responding to the overwhelming demand of internet traffic to develop ubiquitous wireless data coverage with unprecedented speed at millimetre waves.

For the first time in the Internet’s history, the data used by tablets and smartphones now exceeds that of desktops. Emerging technologies and entertainment such as telemedicine, Internet of Things (IoT), 4K video streaming, cloud gaming, social networks, driverless cars, augmented reality and many other unpredictable applications will need a zettabyte (1,000 billions of billions) of wireless data.

Telecommunication manufacturers and operators have not yet solved how to feed a huge amount of data to a new maze of cells. Fibre is too expensive and difficult, if not impossible, to deploy in many urban areas, due to city council permits or disruption.

A desirable solution is a wireless layer that can provide data at the level of tens of gigabits per second per kilometre square. It also needs to be flexible and come at a low cost.

Only the millimetre wave frequencies, 30–300 GHz, with their multi GHz bandwidths, could support tens of gigabits per second of wireless data rate.

The ULTRAWAVE concept is to create an ultra-capacity layer, aiming to achieve the 100 gigabits of data per second threshold, which is also flexible and easy to deploy. This layer will be able to feed data to hundreds of small and pico cells, regardless of the density of mobile devices in each cell. This would open scenarios for new network paradigms and architectures towards fully implementing 5G.

The ULTRAWAVE ultra capacity layer requires significant transmission power to cover wide areas overcoming the high attenuation at millimetre waves. This will be achieved by the convergence of three main technologies, vacuum electronics, solid-state electronics and photonics, in a unique wireless system, enabled by transmission power at multi Watt level. These power levels can only be generated through novel millimetre wave traveling wave tubes.

The ULTRAWAVE consortium includes five top Academic institutions and three high technology SMEs in millimetre wave and wireless technology, from five European countries: Lancaster in UK, Fibernova and Universitat Politecnica de Valencia in Spain, Ferdinand Braun Institute, Goethe University of Frankfurt and HFSE in Germany, OMMIC in France and University of Rome Tor Vergata in Italy.

The ULTRAWAVE project started on the 1st September 2017 and will be presented to the public by the Kickoff Workshop at Lancaster on the 14th September 2017.

More information is available by visiting www.ultrawave2020.eu

Wind projects

Wind energy related projects

RadKom-QS:

The RadKom-QS project (Radarüberwachung und Kommunikation für Qualitätssicherung und Zustandsüberwachung von Rotorblättern) is funded by the Federal Ministry for Economic Affairs and Energy. Grant number: FKZ 0324324C (funding period: November 2018 – Oktober 2021), own project budget: 349.654 EUR.

Project partners are:

  • Goethe-University Frankfurt am Main, Frankfurt
  • Wölfel Engineering GmbH + Co. KG, Höchberg (Coordinator)
  • Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
  • Infineon Technologies AG, München
  • Fraunhofer IWES, Bremerhaven
  • Nordex Energy GmbH, Hamburg (as associate partner)

MultiRadar:

The MultiRadar project (Vogelschutzzonen im Nahbereich von Windenergieanlagen durch Multi-Radartechnologie) is funded by the Federal Ministry for Economic Affairs and Energy. Grant number: FKZ 0324323C (funding period: November 2018 – Oktober 2021), own project budget: 409.868 EUR.

Project partners are:

  • Goethe-University Frankfurt am Main, Frankfurt
  • Wölfel Engineering GmbH + Co. KG, Höchberg (Coordinator)
  • Kaminsky Naturschutzplanung GmbH, Hohenroth
  • HF Systems Engineering GmbH & Co. KG, Kassel

B2-Monitor (finished in October 2018):

In-service detection of material failures based on an integrated sensor network is the main goal of structural health monitoring (SHM). We are developing new and integrated methods (hardware and software) for radar-based SHM applications based on microwave and millimeter wave radiation.

More information:

Moll, J.; Arnold, P.; Mälzer, M.; Krozer, V.; Pozdniakov, D.; Salman, R.; Rediske, S.; Scholz, M.; Friedmann, H. & Nuber, A. Radar-based Structural Health Monitoring of Wind Turbine Blades: The Case of Damage Detection, Structural Health Monitoring, 2017 (accepted in June 2017)

Arnold, P.; Moll, J. & Krozer, V., Design of a Sparse Antenna Array for Radar-based Structural Health Monitoring of Wind Turbine Blades, IET Radar, Sonar & Navigation, 2017 (accepted in April 2017)

Scholz, N.; Moll, J.; Mälzer, M.; Nagovitsyn, K. & Krozer, V. Random Bounce Algorithm: Real-Time Image Processing for the Detection of Bats and Birds – Algorithm Description with Application Examples from a Laboratory Flight Tunnel and a Field Test at an Onshore Wind Energy Plant Signal, Image and Video Processing, Vol. 10(8), 2016, pp.1449-1456

Moll, J.; Mälzer, M.; Krozer, V.; Pozdniakov, D.; Salman, R.; Beetz, J. & Kössl, M., Activity Monitoring of Bats in a Laboratory Flight Tunnel Using a 24 GHz FMCW Radar System, 11th European Conference on Antennas and Propagation (Paris, France), 2017 (accepted in December 2016)

Moll, J.; Krozer, V.; Dürr, M.; Zimmermann, R.; Salman, R.; Hübsch, D.; Friedmann, H.; Nuber, A.; Scholz, M. & Kraemer, P., Radar-based Structural Health Monitoring of Wind Turbine Blades, 19th World Conference on Non-Destructive Testing, 2016, Munich, Germany, pp.1-8

Moll, J.; Mälzer, M.; Scholz, N.; Krozer, V.; Pozdniakov, D.; Salman, R.; Zimmermann, R.; Hechavarria, J.; Beetz, J. & Kössl, M., Radar-based Detection of Bats: Experiments in a Laboratory Flight Tunnel, 10th European Conference on Antennas and Propagation, 2016, pp. 1-4

Moll, J.; Mälzer, M.; Scholz, N.; Krozer, V.; Dürr, M.; Pozdniakov, D.; Salman, R.; Zimmermann, R. & Scholz, M. Radar-based Detection of Birds Near Wind Energy Plants: First Experiences from a Field Study 10th German Microwave Conference, 2016, pp. 239-242

Moll, J. & Krozer, V. Radar-based Mechanical Vibration Sensing for Structural Health Monitoring Applications: A Comparison of Radar Transceiver Measurements at 24GHz and 100GHz, 8th European Workshop on Structural Health Monitoring, 2016, pp. 1-6

Scholz, M.; Rediske, S.; Nuber, A.; Friedmann, H.; Moll, J.; Arnold, P.; Krozer, V.; Kraemer, P.; Salman, R. & Pozdniakov, D. Structural Health Monitoring of Wind Turbine Blades using Radar Technology: First Experiments from a Laboratory Study 8th European Workshop on Structural Health Monitoring, 2016, pp. 1-10

GW4SHM

GW4SHM: Guided Waves for Structural Health Monitoring

The GW4SHM project, funded by the Marie Skłodowska-Curie Actions Innovative Training Network (H2020-MSCA-ITN-2019-860104), aims at different aspects of Structural Health Monitoring (SHM) using guided ultrasonic waves.

Project period

01/01/2020 - 21/12/2023

Website

http://www.gw4shm.eu/

The aim

The overall aim of GW4SHM is to turn SHM from a lab-based technology into real-world applications. To overcome current hurdles that prevent the widespread use of SHM, GW4SHM will pursue the following three objectives:

  • create efficient simulation tools to predict ultrasonic wave propagation in real-life structures made of complex materials
  • develop sophisticated signal processing algorithms to interpret the measured signals, assessing the damage, and eliminating environmental and operational influences in combination with advanced transducer integration
  • devise strategies to assess the reliability of SHM methods with respect to their standardisation and to utilise SHM data for condition-based maintenance and digital twins

The mission

The project will bring together partners from academia and industry and will train a new generation of researchers skilled in all aspects of SHM, enabling them to transform SHM research into practical applications. Focusing on aeronautics, petrochemistry and the automotive industry as initial pilot cases, we will develop SHM concepts to assess the integrity of structures and create ready-to-use tools for industry and other SHM users. The strong collaboration between mathematicians, physicists and engineers aims to bring the capabilities and applicability of SHM methods to the next level.

The training

Our Early Stage Researchers will acquire multidisciplinary scientific expertise, complementary skills, and experience for working in interdisciplinary teams. They will be in a prime position to take up leadership roles in academia and industry. They will enable Europe to take a leading role in the multidisciplinary area of making use of guided wave based SHM technology.

The impact

The novel methods developed within GW4SHM will pave the way for integrating SHM into real-world engineering structures, thereby improving the safety and reliability of European plants, transport systems and critical infrastructure

AcoComm

Drahtlose akustische Kommunikation in dispersiven Wellenleitern für Structural Health Monitoring Anwendungen

Geführte Ultraschallwellen (GW) haben in den letzten Jahren eine beträchtliche Aufmerksamkeit im Bereich der Zerstörungsfreien Materialprüfung (ZFP) sowie der Zustandsüberwachung (structural health monitoring, SHM) erhalten. Grund hierfür ist die Fähigkeit, dass sich GW über lange Strecken hinweg mit nur einer geringen Dämpfung ausbreiten und dabei sensitiv mit Strukturschäden interagieren. Dies ermöglicht eine Schadenserkennung, Lokalisation und auch Schadenscharakterisierung. Allerdings gibt es vielfältige Herausforderungen für die Signalinterpretation, welche mit der Physik der multimodalen und dispersiven Wellenausbreitung zusammenhängen. AcoComm erforscht erstmalig eine Kombination aus drahtloser akustischer Kommunikation mit einem Ansatz der GW-basierten Zustandsüberwachung, wobei die übertragenen Daten an jedem Sensorknoten in Form der Schädigungsindikatoren ermittelt werden. Hierfür werden dispersive, elastische Wellenleiter mit homogenen und heterogenen Materialeigenschaften betrachtet. Der einzigartige Ansatz von AcoComm enthüllt neue Möglichkeiten für autonome und wartungsfreie Sensornetzwerkarchitekturen mit synchronen und asynchronen Kommunikationsschemata. Dies ist insbesondere nützlich für SHM-Szenarien mit fest installierten Sensorknoten, weil eine zusätzliche Verkabelung und RF-Kommunikation vermieden werden kann.AcoComm untersucht Strukturen mit isotropen und anisotropen Materialeigenschaften, welche einen konstanten Querschnitt besitzen. Zum ersten Mal wird eine derartige Form der Datenkommunikation in einem verteilten Netzwerk von piezoelektrischen Wandlern gezeigt, wobei im Unterschied zu bisherigen Ansätzen eine parallele aktive Anregung aller Piezosensoren in einem Sensornetzwerk betrachtet wird.Die Wellenausbreitung wird mit Hilfe der Finite-Elemente-Methode modelliert und mit experimentellen Messungen an der Goethe-Universität Frankfurt und der Universität Bologna verifiziert. Darüber hinaus wird die Bitfehlerhäufigkeit in Bezug auf ihre Empfindlichkeit gegenüber Dispersion quantifiziert. Außerdem wird die Qualität der Datenübertragung in Abhängigkeit von strukturellen Schädigungen untersucht, weil die zusätzlichen Reflexionen durch Schädigungen eine Verschlechterung des Datenlinks bedeutet. Eine Veränderung der Bitfehlerhäufigkeit ermöglicht umgekehrt die Etablierung von neuen Schadensdetektionsmethoden, welche keiner Referenzmessungen des intakten Strukturzustands bedürfen.

More information:

Moll, J.; Mälzer, M.; De Marchi, L.; Testoni, N. & Marzani, A. Experimental Analysis of Digital Data Communication in Intelligent Structures Using Lamb Waves, 11th International Workshop on Structural Health Monitoring (Stanford, USA), 2017, pp. 1654-1661

De Marchi, L.; Marzani, A. & Moll, J. Ultrasonic Guided waves Communications in smart materials: the case of tapered waveguides, 8th European Workshop on Structural Health Monitoring, 2016, pp. 1-8

Moll, J.; De Marchi, L. & Marzani, A., Transducer-to-Transducer Communication in Guided Wave Based Structural Health Monitoring, 19th World Conference on Non-Destructive Testing, 2016, Munich, Germany, pp.1-8

Biomedical

Microwave Breastcancer Detection

Active approaches for microwave mammography are based on the dielectric contrast between healthy and malignant tissue. This allows a three-dimensional localization of one or possibly several tumors. Current research activities consider the heterogeneity of breast tissue which is a major challenge for reliable three-dimensional tumor detection.

More information:

Moll, J.; Wörtge, D.; Krozer, V.; Santorelli A. Popovic, M.; Bazrafshan, B.; Hübner, F.; Vogl, T. & Nikolova, N., Quality Control of Carbon-Rubber Tissue Phantoms: Comparative MRI, CT, X-ray and UWB Microwave Measurements, 11th European Conference on Antennas and Propagation (Paris, France), 2017, pp. 2729-2733

Moll, J.; Wörtge, D.; Byrne, D.; Klemm, M. & Krozer, V., Experimental Phantom for Contrast Enhanced Microwave Breast Cancer Detection Based on 3D-Printing Technology, 10th European Conference on Antennas and Propagation, 2016, pp.1-4

Moll, J.; El Houssaini, M.; Dornuf, F. & Krozer, V. Towards Thermal Differential Imaging for Ultra-wideband Microwave Breast Cancer Detection 10th German Microwave Conference, 2016, pp. 108-111

Moll, J.; Vrba, J.; Merunka, I.; Fiser, O. & Krozer, V., Non-Invasive Microwave Lung Water Monitoring: Feasibility Study, 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 2015, pp. 1-4

Moll, J.; Harley, J. & Krozer, V., Data-driven Matched Field Processing for Radar-based Microwave Breast Cancer Detection, 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 2015, pp.1-4

Moll, J.; McCombe, J.; Hislop, G.; Krozer, V. & Nikolova, N., Towards Integrated Measurements of Dielectric Tissue Properties at Microwave Frequencies, 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 2015, pp. 1-5

Moll, J.; Kelly, T.; Byrne, D.; Sarafianou, M.; Krozer, V. & Craddock, I., Microwave Radar Imaging of Heterogeneous Breast Tissue Integrating A-Priori Information, International Journal of Biomedical Imaging, 2014, Article ID 943549, 10 pages

Moll, J.; Sarafianou, M.; Kelly, T.; Krozer, V. & Craddock, I. Radar-based Tumor Localization in Heterogeneous Breast Tissue Using a 3D Permittivity Model, 8th European Conference on Antennas and Propagation, 2014, pp. 1644-1647